植树问题教案

时间:2024-07-14 12:41:17
植树问题教案

植树问题教案

在教学工作者实际的教学活动中,往往需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?以下是小编整理的植树问题教案,希望对大家有所帮助。

植树问题教案1

教材分析

本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。

这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。

教学目标

1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

2、能利用数学模型解决简单的实际问题。

3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

4、体会数学模型的生活意义与作用,体验到学习的喜悦。

学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。

学习难点:发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

预设过程

一、尝试解题发现问题

1、揭题:今天我们来研究植树方面的问题。(板)

2、课件呈现学习材料,请学生尝试。

3、反馈,形成争议:

1)100÷5=20

2)100÷5+1=21

4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。

二、研究规律

1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?

2、生述师画,发现棵数比间隔数多1。

3、自己尝试画图,完成表格。

4、议:你发现什么?

5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)

6、分析尝试题的正确解法

三、练习

1、变式练习

2、扩展练习

1、完成1-1。

1)议:已知什么,求什么?(师在模型的相应地方画√)

2)尝试完成,并反馈。

2、完成1-2。

1)议:已知什么,求什么?(师在模型的相应地方画√)

2)议:怎么求总长?(板)

3)尝试完成,并反馈。

3、完成2。

1)议:已知什么,求什么?(师在模型的相应地方画√)

2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?

3)尝试完成,并反馈。

四、

植树问题教案2

教学目标:

1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

教学重点:建立并理解“点数=间隔数+1”的数学模型。

教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

教学准备:课件。

教学过程:

一、情境出示,设疑激趣

教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

预设:5根

教师:那手指与手指间的空隙叫什么呢?

预设:间隔

教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

预设:4个间隔

教师:现在再看,现在伸出了几根手指呢?

预设:4根间隔

教师:4根手指之间有几个间隔呢?

预设:3个间隔

教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

预设1:手指数比间隔数多1。

预设2:间隔数比手指数少1.

教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

预设1:手指数=间隔数+1。

预设2:间隔数=手指数-1.

教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

二、引入新知,经历过程,感受方法

教师:请看,请大家默读一下:(课件出示问题)。

引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

教师:这里的有几个间隔?

预设:4个

教师:那你们能不能用一个数学式子来表示?

预设:20÷5=4

教师:20表示什么?5表示什么?4表示什么?(分别提问)

预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

预设:5棵。

教师:怎么列数学关系式?(提问)

预设:4+1=5(棵)

教师:为什么这样列呢?

预设:因为两端都栽。

教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

(请同学上台展示)

三、利用新知,解决问题

教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才 ……此处隐藏18737个字……想方法。

2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

教学难点:

应用植树问题的模型灵活解决一些相关的实际问题。

设计理念:

新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

教学过程:

一、新课导入

1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

板书课题:植树问题

二、引导探究

1、创设情境,理解概念

(1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

(2)理解题意。

a.读题,从题中你了解到了哪些数学信息?有什么问题?

b.理解”间隔“的意思?

C、理解三种种植情况

(两端都种、一端种、两端不种)

2、主动探索,发现规律

(1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整

植树方案

总长(米)

间隔(米)

间隔数 (个)

棵数(棵)

种植情况示意图

(2)学生反馈

(3)组织讨论:你发现什么规律?

两端都种时,棵数=间隔数+1

一端种是时,棵数=间隔数

两端不种时,棵数=间隔数-1

3、应用规律,解决问题

(1)出示例2:

(2)读题后思考,有什么地方需要提醒同学值得注意的。

(3)学生独立解题、反馈

三、回归生活,变式练习

1、封闭图形相当于一端种

(1)出示P122练习二十第4题

圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(2)讨论:封闭图形相当于植树问题中的哪个类型?

(3)学生独立解题,反馈。

2、同时出示两道习题:

(1)锯木头问题(两端都不种)

一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

(2)排列问题(两端都种)

四、欣赏生活中类似于植树问题的事件

生活中的类似于植树问题的――――欣赏

植树问题教案15

教学目标:

1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。

3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

教学重点:用解决植树问题的方法解决实际问题。

教学难点:栽树的棵数与间隔数之间的关系。

教具准备:多媒体。

设计理念:新课标指出:“有效的数学学习活动不能够单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

老师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能够绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1. 能够根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2. 能够利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

老师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

②通过上面的分析,你能够找出什么规律?和同桌或小组内说说。

③现在你能够算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2. 学生自学探讨。(师巡视)

3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

2. 122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:

这节课我们学习了植树问题,并能够利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

《植树问题教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式